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A B S T R A C T

Cross-domain recommendation (CDR) provides a promising solution to mitigate the sparsity issue in the
target domain by exploiting auxiliary information from the source domain. Recently, meta learning based
methods have been proposed and achieved the state-of-the-art performance. However, these methods learn
the transfer bridge solely relying on the source domain while the rich information from the target domain
are ignored. Moreover, they leverage either a common transfer bridge or a personalized transfer bridge to
transform user representations, without considering the multi-grained characteristics of user preference. In this
paper, we propose a target-enhanced joint meta network with contrastive learning (JTMN) for cross-domain
recommendation. To be specific, we develop a target bridge to incorporate information from the target domain
to guide the learning process of user preference transfer. In addition, we introduce multi-grained transfer
bridges to model the complex transfer patterns of user preference across different domains. At last, a target-
aware contrastive learning layer is designed to obtain better user representations. The experimental results
on six CDR tasks demonstrate that our proposed TJMN model significantly outperforms all strong baselines,
especially when the training data become more sparse.
1. Introduction

In recent years, recommender systems have attracted a great amount
of attention and emerged as a powerful strategy for alleviating the
information overload problem [1–4]. Conventional research works
mainly focus on leveraging users’ historical interactions and have
achieved encouraging performance. However, in the real-world sce-
narios, the historical interactions of users would be sparse or even
unavailable, i.e., cold-start users, which leads to unsatisfying recom-
mendation. To deal with this issue, cross-domain recommendation
(CDR) [5–7], which aims to transfer the information from the source
domain to the target domain, have been proposed as a promising
solution. The core assumption of CDR is that the source domain and
the target domain are relevant and knowledge learned from the source
domain could be utilized to enhance the recommendation in the target
domain. Existing methods usually rely on the embedding and mapping
structure [8–10], which aim at learning a mapping function from source
domain to target domain by leveraging the overlapping users. The main
limitation of these methods is that they may be biased to the limited
overlapping users and suffer from unsatisfying generalization ability.
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More recently, some research works attempt to apply meta learn-
ing [11–13] to handle the above-mentioned issue due to its good
generalization ability. Zhu et al. [14] propose a transfer-meta frame-
work for CDR (TMCDR) by learning a common bridge between the
source domain and the target domain. TMCDR is comprised of a
transfer stage and a meta stage, where the former is utilized to obtain
the pre-trained source and target models, and the latter is developed
to implicitly transfer the embeddings from the source domain to the
target domain. Since the relationships between user preference of the
two domains may vary considerably, Zhu et al. [2] further propose
a personalized transfer bridge of user preference for cross-domain
recommendation (PTUPCDR). Instead of learning a common bridge for
all users, PTUPCDR utilizes the characteristic embedding of each user in
the source domain as input to generate the corresponding personalized
bridge, i.e., the learned bridge will vary from user to user. With this
strategy, the complex relationships between user preference of both
domains can be well modeled in a fine-grained manner.

Although existing meta learning based methods have achieved en-
couraging performance, they still suffer from some defects. First, these
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Fig. 1. The difference between our proposed approach TJMN and conventional meta network based methods. (A) All users share a common bridge. (B) A meta network is utilized
to generate a personalized bridge for each user. (C) Our proposed approach TJMN leverages multi-granularity bridges to capture different user preference transfer patterns with
distinct granularities.
methods learn the transfer bridge solely relying on the source domain
while the information from the target domain is ignored. Since the
information from the target domain is also important for bridging
user preference between the source and target domains, further in-
corporating the information from the target domain will be useful
to guide the learning procedure. Second, existing methods leverage
either a common bridge or a personalized bridge to transform users’
representations. The former could be considered as a coarse-grained
bridge which captures the common user preference within both source
and target domains, while the latter could be considered as a fine-
grained bridge which models the personalized user preference within
the two domains. We argue that simultaneously utilizing both kinds
of bridges will bring more benefits for learning better representations.
Third, existing methods learn user representations by only utilizing pos-
itive interacted items, which indicates user preference, while overlook
what they dislike, thus cannot capture the rich partial order relation
information of user preference.

To deal with the issues mentioned-above, in this paper, we pro-
pose a novel approach named Target-enhanced Joint Meta Network
with Contrastive Learning (JTMN) for cross-domain recommendation.
Specifically, we develop a target bridge which introduces the signal
from the target domain to guide the learning process of user preference
transfer between the two domains. Moreover, instead of learning either
a coarse-grained bridge (i.e., common bridge [14]) or a fine-grained
bridge (i.e., personalized bridge [2]), we develop multi-granularity
transfer bridges, which include a tri-kernel personalized bridge and a
common bridge, in order to capture different user preference transfer
patterns with distinct granularities. The tri-kernel personalized bridge
leverages users’ positive and negative interaction items by generating
three intent kernels, i.e., the positive intent kernel, the negative intent
kernel and the mix intern kernel. Finally, we also propose a target-
aware contrastive learning layer to learn better user representations by
enhancing the contrastive learning with signals from the target domain.
The difference between our work and conventional meta network based
methods is illustrated in Fig. 1.

We carry out extensive experiments on six different cross-domain
recommendation tasks, and the results show that our proposed method
outperforms all state-of-the-art baselines in terms of both metrics,
i.e., the mean absolute error (MAE) and the root mean square error
(RMSE). The main contributions are summarized as follows:

• We propose to incorporate the target signal to guide the process of
user preference transfer between the source and target domains.
To the best of our knowledge, our proposed TJMN is the first work
to exploit the target signal with a target bridge to capture the
complex relationships between the user preference of the source
and target domain.

• We develop a target-enhanced joint meta network with con-
trastive learning to capture user transferable characteristics from
2 
different perspectives, in which the multi-granularity transfer
bridges are developed to capture different user preference transfer
patterns with distinct granularities.

• Extensive experiments demonstrate that our proposed model is
superior to the state-of-the-art baselines. Further ablation studies
also verify the effectiveness of each module in our model.

The rest of the paper is organized as follows. Section 2 gives a brief
review of the related work. In Section 3, we describe the details of our
proposed approach. The experimental results of our empirical studies
are discussed in Section 4 and we conclude the paper in Section 5.

2. Related work

Recommender systems (RS) have emerged as an indispensable com-
ponent for alleviating the information overload problem in real-world
applications. Previous research works usually suffer from the cold-start
problem [14–17], where few user–item interactions are available for
users for making effective recommendation. To handle this issue, cross-
domain recommendation (CDR) have received considerable attention
in recent years. Early studies on CDR are mainly based on the collabo-
rative filtering framework [5,18–20]. CMF [5] aims to simultaneously
factor several matrices and share the user embeddings across differ-
ent domains. Temporal-domain CF [18] employs the cross-domain CF
framework [21] to connect different temporal domains via introducing
the group-level rating matrix, which can be considered as an expected
rating provided by a user prototype on an item prototype. The related-
ness of user-group memberships between successive temporal domains
will be modeled to capture the user-interest drift. CDTF [19] models
the interactions between domain-specific user factors and item factors
by exploring the triadic relation user–item-domain.

In recent years, many deep learning based methods have been
proposed to address the sparsity and cold-start problems in CDR. EM-
CDR [8] investigates the CDR problem from an embedding and map-
ping perspective. It first learns user representations in different domains
independently, and then trains a cross-domain mapping function by
minimizing the distance between the actual target embeddings and
the transferred embeddings in the target domain for these overlap-
ping users. DCDCSR [9] extends EMCDR by generating benchmark
factors and mapping the latent factors in the target domain to fit
these benchmark factors. It considers fine-grained sparsity degrees of
individual users and items to combine the latent factors learned from
both the source and target domains. Since the number of overlapping
users between the source and target domains would be very limited in
many real applications, these EMCDR-based methods may suffer from
the unsatisfying generalization ability on cold-start users in the target
domain. To deal with this issue, SSCDR [22] attempts to capture the
cross-domain relationship via learning the latent vectors of users and
items in metric space. It utilizes a semi-supervised approach to train
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a cross-domain mapping function and infers the latent vectors of the
old-start users based on users’ neighborhood information.

More recently, some meta learning [2,14] based methods have been
proposed and obtained the SOTA performance for the task of cross-
domain recommendation. TMCDR [14] applies a transfer-meta frame-
work for CDR by replacing the training procedure of these EMCDR-
based methods. It is comprised of a transfer stage and a meta stage.

iffer from these EMCDR-based methods which train the embedding
odel solely on overlapping users, the transfer stage trains a unique
odel for each domain and takes the source and target models as
re-trained models. In the meta stage, it learns a task-oriented meta

network to transform embeddings of the overlapping users from the
source domain to the target domain. As the complex relationships
between user preference in different domains would vary from user
to user, learning a common bridge shared by all users would be
mproper to capture users’ individual preference. To alleviate this

issue, PTUPCDR [2] leverages a meta network to generate a person-
alized bridge for each user, in which the bridge function depends
n each user’s characteristics. After training, user embeddings in the
ource domain will be fed into the meta-generated personalized bridge
unctions to obtain the transformed user embeddings in the target
omain. REMIT [23] proposes to extract users’ multiple interests by

exploiting external knowledge such as item category and brand, and
aggregate transformed interests based on a reinforcement learning
framework. The limitation of this method is that it heavily relies on
xternal knowledge. To address this problem, MIMNet [24] develops
 multi-interest meta network to decouple users’ multiple interests,
nd generates multi-interest bridges to transfer user representations

from the source domain to the target domain. The main differences
between our proposed approach and the state-of-the-art methods are
three folds. First, to the best of our knowledge, our proposed approach
is the first work that exploiting the target signal with a target bridge
to capture the complex relationships between the user preference of
the source and target domain. Second, we simultaneously employ both
coarse-grained and fine-grained bridges to capture the common user
preference as well as the personalized user preference between the
source and target domains. Third, we further model users’ negative
transferable characteristics based on their negative interaction items
in order to capture the rich partial order relation information of user
preference.

3. Preliminaries

In cross-domain recommendation, we have a source domain and
a target domain. Each domain includes users, items, and interactions
(𝑒.𝑔 ., 𝑟𝑎𝑡𝑖𝑛𝑔 𝑠) between users and items. Let 𝑈 = {𝑢1, 𝑢2,… , 𝑢𝑛} denote
the user set and 𝑉 = {𝑣1, 𝑣2,… , 𝑣𝑚} denote the item set, where n
and m are the number of users and items, respectively. Let 𝑅 denote
the rating matrix and 𝑟𝑖𝑗 ∈ 𝑅 represents the interaction between the
user 𝑢𝑖 and the item 𝑣𝑗 . We denote the user set, the item set and the
rating matrix in the source domain as 𝑈 𝑠, 𝑉 𝑠 and 𝑅𝑠. Similarly, we
use 𝑈 𝑡, 𝑉 𝑡 and 𝑅𝑡 for the target domain. We denote the overlapping
users between the two domains as 𝑈 𝑜 = 𝑈 𝑠 ∩ 𝑈 𝑡, and the cold-start
users (i.e., users exist in the source domain while not in the target
domain) as 𝑈 𝑐 = {𝑢|𝑢 ∈ 𝑈 𝑠 ∧ 𝑢 ∉ 𝑈 𝑡}. It is worth noting that, in
cross-domain recommendation, the two domains have no shared items,
i.e., 𝑉 𝑠 ∩ 𝑉 𝑡 = ∅.

For each user 𝑢𝑠𝑖 in source domain, we denote 𝑆𝑝
𝑢𝑖 = {𝑣𝑠,𝑝1 , 𝑣𝑠,𝑝2 ,… , 𝑣𝑠,𝑝𝑝𝑖 }

and 𝑆𝑛
𝑢𝑖
= {𝑣𝑠,𝑛1 , 𝑣𝑠,𝑛2 ,… , 𝑣𝑠,𝑛𝑛𝑖 } as his corresponding positive and negative

interaction items respectively, where 𝑝𝑖 (𝑛𝑖) denotes the number of
positive (negative) interaction items, and 𝑣𝑠,𝑝𝑘 (𝑣𝑠,𝑛𝑘 ) denotes the 𝑘th
positive (negative) interaction item. We can transform the users and
items into dense vectors, also called embeddings, with the latent factor
model [25]. In this paper, we use 𝐮∗𝑖 ∈ R𝑑 and 𝐯∗𝑖 ∈ R𝑑 to denote
the embeddings of the user 𝑢∗𝑖 and the item 𝑣∗𝑖 respectively, where 𝑑
denotes the dimensionality of the embedding and ∗∈ {𝑠, 𝑡} represents
 t

3 
the label of domain. Specifically, we use 𝐒𝑝𝑢𝑖 = {𝐯𝑠,𝑝1 , 𝐯𝑠,𝑝2 ,… , 𝐯𝑠,𝑝𝑝𝑖 } to
denote the embeddings of positive interaction items of user 𝑢𝑠𝑖 in the
ource domain, where 𝐯𝑠,𝑝𝑘 ∈ R𝑑 is the embedding of the positive
nteraction item 𝑣𝑠,𝑝𝑘 . Similarly, we use 𝐒𝑛𝑢𝑖 = {𝐯𝑠,𝑛1 , 𝐯𝑠,𝑛2 ,… , 𝐯𝑠,𝑛𝑛𝑖 } to denote
he embeddings of negative interaction items of user 𝑢𝑠𝑖 in the source
omain, where 𝐯𝑠,𝑛𝑘 ∈ R𝑑 is the embedding of the negative interaction
tem 𝑣𝑠,𝑛𝑘 .
Positive Characteristic Encoder. Inspired by the attention mech-

anism [26,27], the attention weights corresponding to different items
could be leveraged to reflect their importance for personalized bridge
functions. Therefore, the representation of the current user 𝑢𝑠𝑖 charac-
terized by the positive interaction items can be defined as follows:

𝐩𝑢𝑖 =
𝑝𝑖
∑

𝑘=1
𝛼𝑝𝑘𝐯

𝑠,𝑝
𝑘 , (1)

𝛼𝑝𝑘 =
exp (𝑎𝑝𝑘)

∑𝑝𝑖
𝑗=1 exp (𝑎

𝑝
𝑗 )
, (2)

𝑎𝑝𝑗 = 𝐴𝑡𝑡𝑛(𝐯𝑠,𝑝𝑗 ; 𝜃𝑝), (3)

where 𝐴𝑡𝑡𝑛(⋅) represents the attention network and 𝜃𝑝 represents its
corresponding parameters.

Negative Characteristic Encoder. The representation of user 𝑢𝑠𝑖
characterized by the negative interaction items can be estimated in a
similar way as the positive characteristic encoder. However, different
from these positive interaction items, the negative interaction items
usually contain no or little user preference information. Therefore,
we adopt the mean pooling to obtain the representation of user 𝑢𝑠𝑖
characterized by the negative interaction items as:

𝐧𝑢𝑖 =
1
𝑛𝑖

𝑛𝑖
∑

𝑘=1
𝐯𝑠,𝑛𝑘 . (4)

The notations we will use throughout this paper are summarized in
Table 1.

4. Model

In this section, we introduce the proposed Target-enhanced Joint
Meta Network (TJMN), which attempts to learn multiple transfer
bridges with different granularities of user preference as well as involve
the information from the target domain to guide the learning process.

he overall structure of the proposed model TJMN is illustrated in
Fig. 2, which mainly consists of five components: (1) Tri-Kernel Person-
alized Bridge; (2) Common Bridge; (3) Target Bridge; (4) Target-Aware
Contrastive Learning Layer; (5) Prediction Layer.

4.1. Tri-Kernel Personalized Bridge (TKPB)

When capturing users’ transferable characteristics, existing research
works [2,14,28,29] mainly focus on considering positive interaction
tems (i.e., items with high rating scores) while largely overlook these
egative interaction items (i.e., items with lower rating scores or no
nteractions). Due to the data sparsity, these positive interaction items
ould not fully reflect a user preference, e.g., they can only reflect
hat a user likes while not she dislikes. To address this issue, we
ropose to incorporate the negative interaction items to capture users’
egative transferable characteristics. The rationale to involve these
egative interaction items is that they usually contain rich partial order
elation information, i.e., these positive interaction items are usually
ore informative as compared to these negative interaction items. To

ffectively capture users’ transferable characteristics, we attempt to
imultaneously leverage users’ positive and negative interaction items,
nd develop a Tri-Kernel Personalized Bridge (TKPB). In particular,
KPB contains two meta networks (i.e., the source-drive pos-meta
etwork and the source-drive neg-meta network), which are utilized
o generate the positive and negative intent kernels, respectively. A
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Table 1
Notations and explanations.

Notation Description

𝑈 User set
𝑉 Item set
𝑅 Rating matrix
𝑟𝑖𝑗 Interaction between the user 𝑢𝑖 and the item 𝑣𝑗
𝑈 𝑜 Overlapping users between the source and

target domains
𝑈 𝑐 Cold-start users
𝑢𝑠𝑖 The 𝑖th user in the source domain
𝑆𝑝
𝑢𝑖 Corresponding positive interaction items of 𝑢𝑠𝑖

𝑆𝑛
𝑢𝑖

Corresponding negative interaction items of 𝑢𝑠𝑖
𝑝𝑖(𝑛𝑖) Number of positive (negative) interaction

items
𝑣𝑠,𝑝𝑘 (𝑣𝑠,𝑛𝑘 ) The 𝑘th positive (negative) interaction item
𝐮𝑠𝑖 ID embedding of 𝑢𝑠𝑖 in the source domain
𝐩𝑢𝑖 (𝐧𝑢𝑖 ) Representation of 𝑢𝑠𝑖 characterized by the

positive (negative) interaction items in the
source domain

𝐰𝑝
𝑢𝑖 Parameters of the positive personalized

bridge function
𝐰𝑛

𝑢𝑖
Parameters of the negative personalized
bridge function

𝐰𝑢𝑖 Parameters of the mixed personalized bridge
function

𝐰𝑣𝑡𝑗
Parameters of the personalized target bridge
function

𝐮𝑡𝑝𝑖 Transformed representation of 𝐮𝑠𝑖 by the mixed
personalized bridge function

𝐩𝑡𝑝𝑢𝑖 Transformed representation of 𝐩𝑢𝑖 by the positive
personalized bridge function

𝐧𝑡𝑝𝑢𝑖 Transformed representation of 𝐧𝑢𝑖 by the negative
personalized bridge function

𝐮𝑡𝑐𝑖 Transformed representation of 𝐮𝑠𝑖 by the common
bridge

𝐩𝑡𝑐𝑢𝑖 Transformed representation of 𝐩𝑢𝑖 by the common
bridge

𝐧𝑡𝑐𝑢𝑖 Transformed representation of 𝐧𝑢𝑖 by common
bridge

𝐮𝑡𝑝𝑖,𝑣𝑡𝑗
(𝐮𝑡𝑐𝑖,𝑣𝑡𝑗 ) Transformed representation of 𝐮𝑡𝑝𝑖 (𝐮𝑡𝑐𝑖 ) by the

personalized target bridge function
𝐮̂𝑡𝑖 The final transformed representation of 𝑢𝑠𝑖

in target domain
𝑟̂𝑖𝑗 The predicted rating user 𝑢𝑖 gives to item 𝑣𝑗

in target domain
𝑡

𝑜 The ratings of overlapping users in the target
domain

𝜏 The temperature parameter
𝜆 The trade-off parameter

mixed intent kernel is also introduced to capture users’ comprehensive
transferable characteristics. Based on the three intent kernels, TKPB
enerates three corresponding personalized bridge functions, including
he positive personalized bridge function, the negative personalized
ridge function, and the mixed personalized bridge function.

4.1.1. Source-drive pos-meta network
Inspired by the meta-learning [2,30], we propose a meta network to

enerate the positive intent kernel based on users’ positive transferable
haracteristics. It is worth noting that the input of this meta network
olely relies on the positive interaction items in the source domain,
hus we call the meta network as the source-drive pos-meta network.
o be specific, the source-drive pos-meta network 𝑔𝑝(⋅) is defined as a

two-layer feed-forward network, which takes 𝐩𝑢𝑖 as input:

̃ 𝑝𝑢𝑖 = 𝑔𝑝(𝐩𝑢𝑖 ;𝜙𝑝), (5)

where 𝜙𝑝 are learnable parameters, 𝐰̃𝑝
𝑢𝑖 ∈ R𝑑2 is a vector whose

size depends on the structure of its corresponding personalized bridge
function. We then reshape 𝐰̃𝑝

𝑢𝑖 into a matrix and obtain the positive
intent kernel 𝐰𝑝

𝑢𝑖 ∈ R𝑑×𝑑 :
𝑝 𝑝
𝐰𝑢𝑖
= 𝑟𝑒𝑠ℎ𝑎𝑝𝑒(𝐰̃𝑢𝑖

). (6) w

4 
4.1.2. Source-drive neg-meta network
Similar to the source-drive pos-meta network, we propose a source-

drive neg-meta network to generate the negative intent kernel by
considering users’ negative transferable characteristics. In particular,
we take 𝐧𝑢𝑖 as input, and generate a vector 𝐰̃𝑛

𝑢𝑖
∈ R𝑑2 with the meta

network 𝑔𝑛(⋅) as follows:

𝐰̃𝑛
𝑢𝑖
= 𝑔𝑛(𝐧𝑢𝑖 ;𝜙𝑛), (7)

where 𝜙𝑛 are learnable parameters. We reshape 𝐰̃𝑛
𝑢𝑖

into a matrix and
obtain the negative intent kernel 𝐰𝑛

𝑢𝑖
∈ R𝑑×𝑑 :

𝐰𝑛
𝑢𝑖
= 𝑟𝑒𝑠ℎ𝑎𝑝𝑒(𝐰̃𝑛

𝑢𝑖
). (8)

4.1.3. Personalized bridge functions
For each user 𝑢𝑠𝑖 in the source domain, after obtaining the positive

ntent kernel 𝐰𝑝
𝑢𝑖 ∈ R𝑑×𝑑 and the negative intent kernel 𝐰𝑛

𝑢𝑖
∈ R𝑑×𝑑 ,

we also incorporate a mixed intent kernel 𝐰𝑢𝑖 ∈ R𝑑×𝑑 which is used
to capture the comprehensive transferable characteristics of the user.
Formally, the mixed intent kernel is defined as follows:

𝐰𝑢𝑖 = 𝐰𝑝
𝑢𝑖
⊙ 𝐰𝑛

𝑢𝑖
, (9)

where ⊙ denotes the element-wise product. We leverage 𝐰𝑝
𝑢𝑖 , 𝐰𝑛

𝑢𝑖
and 𝐰𝑢𝑖 as the corresponding parameters of the positive personalized
bridge function 𝑓 𝑝𝑒𝑟(⋅;𝐰𝑝

𝑢𝑖 ), the negative personalized bridge function
𝑓 𝑝𝑒𝑟(⋅;𝐰𝑛

𝑢𝑖
) and the mixed personalized bridge function 𝑓 𝑝𝑒𝑟(⋅;𝐰𝑢𝑖 ), re-

spectively. Following [8,22], we adopt a linear layer as 𝑓 𝑝𝑒𝑟(⋅). With the
three bridge functions, we can obtain the transformed representations
in the target domain of 𝐮𝑠𝑖 , 𝐩𝑢𝑖 , and 𝐧𝑢𝑖 as follows:

𝐮𝑡𝑝𝑖 = 𝑓 𝑝𝑒𝑟(𝐮𝑠𝑖 ;𝐰𝑢𝑖 ), (10)
𝑡𝑝
𝑢𝑖 = 𝑓 𝑝𝑒𝑟(𝐩𝑢𝑖 ;𝐰

𝑝
𝑢𝑖
), (11)

𝑡𝑝
𝑢𝑖 = 𝑓 𝑝𝑒𝑟(𝐧𝑢𝑖 ;𝐰

𝑛
𝑢𝑖
). (12)

4.2. Common bridge

The above-mentioned tri-kernel personalized bridge is designed
o model various relationships between user preferences in different
omains, which can be considered as fine-grained user transferable
haracteristics. However, many users would share similar relationships
n different domains where the common user transferable characteris-
ics should be taken into consideration. To the end, we also introduce
 common bridge which attempts to capture the coarse-grained user

transferable characteristics.
More precisely, we take a two-layer feed-forward network 𝑓 𝑐 𝑜𝑚(⋅;𝐰𝑐 )

as the common bridge, where 𝐰𝑐 are learnable parameters. For each
user’s characteristics in the source domain, i.e., 𝐮𝑠𝑖 , 𝐩𝑢𝑖 , and 𝐧𝑢𝑖 , we
can obtain the corresponding transformed representations in the target
domain as follows:

𝐮𝑡𝑐𝑖 = 𝑓 𝑐 𝑜𝑚(𝐮𝑠𝑖 ;𝐰𝑐 ), (13)

𝐩𝑡𝑐𝑢𝑖 = 𝑓 𝑐 𝑜𝑚(𝐩𝑢𝑖 ;𝐰𝑐 ), (14)

𝐧𝑡𝑐𝑢𝑖 = 𝑓 𝑐 𝑜𝑚(𝐧𝑢𝑖 ;𝐰𝑐 ). (15)

4.3. Target bridge

Since both tri-kernel personalized bridge and common bridge over-
look the influence of the preference signals from the target domain,

e argue that the target information could also bring useful signal
o guide the process of preference transfer. To model the information
rom the target domain explicitly, we introduce a novel target bridge,
hich is developed to capture the complex relationships between the
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Fig. 2. The proposed framework TJMN for cross-domain recommendation. (a) The main procedure of TJMN, which attempts to learn multiple transfer bridges with different
granularities of user preference as well as involve the information from the target domain to guide the learning process. (b) The structure of Positive/Negative Characteristic
Encoder. (c) The structure of Target-Aware Contrastive Loss.
user preference of the source and target domain by capturing the
characteristics of each target item in the target domain. Specifically, we
leverage a meta network which takes a target item embedding 𝐯𝑡𝑗 as the
input, and the output 𝐰̃𝑣𝑡𝑗

∈ R𝑑2 is reshaped into a matrix 𝐰𝑣𝑡𝑗
∈ R𝑑×𝑑 .

Formally, we have:

𝐰̃𝑣𝑡𝑗
= 𝑔𝑡(𝐯𝑡𝑗 ;𝜙𝑡), (16)

𝐰𝑣𝑡𝑗
= 𝑟𝑒𝑠ℎ𝑎𝑝𝑒(𝐰̃𝑣𝑡𝑗

), (17)

where 𝜙𝑡 are learnable parameters and 𝑔𝑡(⋅) is a two-layer feed-forward
network. We utilize 𝐰𝑣𝑡𝑗

as the corresponding parameters of the per-
sonalized target bridge function 𝑓 𝑡𝑎𝑟(⋅;𝐰𝑣𝑡𝑗

), and obtain the transformed

target representations of 𝐮𝑡𝑝𝑖 and 𝐮𝑡𝑐𝑖 as follows:

𝐮𝑡𝑝
𝑖,𝑣𝑡𝑗

= 𝑓 𝑡𝑎𝑟(𝐮𝑡𝑝𝑖 ;𝐰𝑣𝑡𝑗
), (18)

𝐮𝑡𝑐
𝑖,𝑣𝑡𝑗

= 𝑓 𝑡𝑎𝑟(𝐮𝑡𝑐𝑖 ;𝐰𝑣𝑡𝑗
). (19)

4.4. Target-aware contrastive learning layer

In this section, we further incorporate contrastive [31] learning
to enhance user representations in the target domain. Different from
previous work, we introduce the information of the target item into the
contrastive learning procedure and propose a target-aware contrastive
learning layer. In particular, in each mini-batch , we have 𝑁 samples
with each sample (𝑢𝑜𝑖 , 𝑆𝑝

𝑢𝑖 , 𝑆𝑛
𝑢𝑖
, 𝑣𝑡𝑗 , 𝑟𝑖𝑗 ) consisting of a overlapping user

𝑢𝑜𝑖 ∈ 𝑈 𝑜, his corresponding positive items 𝑆𝑝
𝑢𝑖 and negative interaction

items 𝑆𝑛
𝑢𝑖

in the source domain, a target item 𝑣𝑡𝑗 and his rating score
𝑟𝑖𝑗 on 𝑣𝑡𝑗 in the target domain. For the user 𝑢𝑜𝑖 , we first obtain his
transformed representations 𝐮𝑡𝑝𝑖 , 𝐩𝑡𝑝𝑢𝑖 , 𝐧

𝑡𝑝
𝑢𝑖 via the tri-kernel personalized

bridge. Then we leverage contrastive learning to learn better represen-
tations of 𝑢𝑜 𝑡𝑝 𝑡𝑝
𝑖 . Formally, we define the similarity between 𝐮𝑖 and 𝐩𝑢𝑖 as

5 
follows:

𝜙(𝐮𝑡𝑝𝑖 ,𝐩
𝑡𝑝
𝑢𝑖 , 𝐯

𝑡
𝑗 ) = −(𝑟̂𝑢𝑣𝑖𝑗 − 𝑟̂𝑝𝑣𝑖𝑗 )

2, (20)

where 𝑟̂𝑢𝑣𝑖𝑗 is the inner-product of 𝐮𝑡𝑝𝑖 and 𝐯𝑡𝑗 , and 𝑟̂𝑝𝑣𝑖𝑖 is the inner
product of 𝐩𝑡𝑝𝑢𝑖 and 𝐯𝑡𝑗 . It is worth noting that, here we consider the
triple (𝐮𝑡𝑝𝑖 ,𝐩

𝑡𝑝
𝑢𝑖 , 𝐯

𝑡
𝑗 ) as a positive instance, where the target information

𝐯𝑡𝑗 is introduced to assist the contrastive learning procedure. For the
negative instance construction, we introduce two kinds of negative
instances, i.e., (𝐮𝑡𝑝𝑖 ,𝐧

𝑡𝑝
𝑢𝑖 , 𝐯

𝑡
𝑗 ) and (𝐮𝑡𝑝𝑘 ,𝐩

𝑡𝑝
𝑢𝑘 , 𝐯

𝑡
𝑗 ), where the former represents

negative instances based on the negative interaction items of 𝑢𝑜𝑖 , and
the latter considers the positive interaction items of other users in
the same mini-batch as negative instances. Formally, the target-aware
contrastive loss corresponding to the tri-kernel personalized bridge is
defined as follows:

𝑝𝑒𝑟 = − 1
||

∑

𝑖∈
log 𝑒𝜙(𝐮

𝑡𝑝
𝑖 ,𝐩

𝑡𝑝
𝑢𝑖 ,𝐯

𝑡
𝑗 )∕𝜏

𝑍1
𝑝𝑒𝑟 +𝑍2

𝑝𝑒𝑟
, (21)

where 𝑍1
𝑝𝑒𝑟 = 𝑒𝜙(𝐮

𝑡𝑝
𝑖 ,𝐧

𝑡𝑝
𝑢𝑖 ,𝐯

𝑡
𝑗 )∕𝜏 , 𝑍2

𝑝𝑒𝑟 =
∑

𝑘∈ 𝑒𝜙(𝐮
𝑡𝑝
𝑘 ,𝐩

𝑡𝑝
𝑢𝑘 ,𝐯

𝑡
𝑗 )∕𝜏 , and 𝜏 denotes a

temperature parameter.
In addition, we also incorporate a target-aware contrastive learn-

ing layer towards the transformed representations 𝐮𝑡𝑐𝑖 , 𝐩𝑡𝑐𝑢𝑖 , 𝐧𝑡𝑐𝑢𝑖 of the
common bridge. Similar to the 𝑝𝑒𝑟, the target-aware contrastive loss
corresponding to the common bridge is defined as follows:

𝑐 𝑜𝑚 = − 1
||

∑

𝑖∈
log 𝑒𝜙(𝐮

𝑡𝑐
𝑖 ,𝐩𝑡𝑐𝑢𝑖 ,𝐯

𝑡
𝑗 )∕𝜏

𝑍1
𝑐 𝑜𝑚 +𝑍2

𝑐 𝑜𝑚
, (22)

where 𝑍1
𝑐 𝑜𝑚 = 𝑒𝜙(𝐮

𝑡𝑐
𝑖 ,𝐧𝑡𝑐𝑢𝑖 ,𝐯

𝑡
𝑗 )∕𝜏 and 𝑍2

𝑐 𝑜𝑚 =
∑

𝑘∈ 𝑒𝜙(𝐮
𝑡𝑐
𝑘 ,𝐩𝑡𝑐𝑢𝑘 ,𝐯

𝑡
𝑗 )∕𝜏 .

4.5. Prediction layer

After the representations learned by different bridge functions, we
obtain users’ transformed representations in the target domain. Since a
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Table 2
Statistics of 6 different CDR tasks. ‘‘Overlap’’ denotes the number of overlapping users.

Dataset Amazon Douban

CDR tasks Task1 Task2 Task3 Task4 Task5 Task6

domain Source Movie Book Book DoubanBook DoubanBook DoubanMusic
Target Music Movie Music DoubanMovie DoubanMusic DoubanMovie

Item Source 50,052 367,982 367,982 95,872 95,872 79,878
Target 64,443 50,052 64,443 34,893 79,878 34,893

User
Overlap 18,031 37,388 16,738 2,209 1,736 1,815
Source 123,960 603,668 603,668 2,212 2,212 1,820
Target 75,258 123,960 75,258 2,712 1,820 2,712

Rating Source 1,697,533 8,898,041 8,898,041 227,251 227,251 179,847
Target 1,097,592 1,697,533 1,097,592 1,278,401 179,847 1,278,401
s

o
t

i

user’s final decision on candidate items heavily relies on his preference
in the target domain, we fuse the transformed representations from
different perspectives, including 𝐮𝑡𝑝𝑖 , 𝐮𝑡𝑐𝑖 , 𝐮𝑡𝑝

𝑖,𝑣𝑡𝑗
, 𝐮𝑡𝑐

𝑖,𝑣𝑡𝑗
. We adopt a mean-

pooling layer to fuse these transformed representations, and the final
transformed representation 𝐮̂𝑡𝑖 is represented as follows:

𝐮̂𝑡𝑖 =
1
4
(𝐮𝑡𝑝𝑖 + 𝐮𝑡𝑐𝑖 + 𝐮𝑡𝑝

𝑖,𝑣𝑡𝑗
+ 𝐮𝑡𝑐

𝑖,𝑣𝑡𝑗
). (23)

Then, the predicted rating score 𝑟̂𝑖𝑗 is calculated by the inner-product
f 𝐮̂𝑡𝑖 and the target item embedding 𝐯𝑡𝑗 :

̂𝑖𝑗 = (𝐮̂𝑡𝑖)T𝐯𝑡𝑗 . (24)

Let 𝑡
𝑜 = {𝑟𝑖𝑗 |𝑢𝑖 ∈ 𝑈 𝑜 ∧𝑣𝑗 ∈ 𝑉 𝑡} denote the ratings of overlapping users

in the target domain, the loss function is formulated as:

𝑝𝑟𝑒𝑑 = 1
|𝑡

𝑜|

∑

𝑟𝑖𝑗∈𝑡
𝑜

(𝑟𝑖𝑗 − 𝑟̂𝑖𝑗 )2. (25)

4.6. Model training

The proposed model is jointly trained by combining the task-
oriented loss 𝑝𝑟𝑒𝑑 and the two target-aware contrastive losses 𝑝𝑒𝑟 and
𝑐 𝑜𝑚. The overall loss function is defined as follows:

 = 𝑝𝑟𝑒𝑑 + 𝜆(𝑝𝑒𝑟 + 𝑐 𝑜𝑚), (26)

where 𝜆 is a trade-off parameter. We train all learnable parameters by
minimizing  with the gradient descent method. It is worth noting that
the model training is based on the overlapping users across the two
domains. For both positive and negative characteristic encoders, we
et the numbers of positive and negative items as 20. Following [2],

we set the dimension of both users and items as 10. During the
training process, all parameters are randomly initialized and optimized
through back-propagation with the Adam algorithm. The learning rate
is initialized as 0.02, and the mini-batch size for the Task 1, Task 2
and Task 3 are 128, 512 and 512, respectively. For all tasks, we set
the trade-off parameter 𝜆 and the temperature parameter 𝜏 as 1 and
0.01, respectively. More analysis about the parameter settings will be
discussed in Section 5.7.

5. Experiments

5.1. Datasets

We conduct our experiments on two real-world public datasets,
i.e., the Amazon review dataset [2,14,22] and the Douban dataset [32,
33]. For the Amazon review dataset, we choose three popular sub-
ets, i.e., movies_and_tv (Movie), cds_and_viny1 (Music), and books

(Book) for the experiments. Following [2], we define three CDR tasks,
ncluding Task 1: Movie ←←→ Music, Task 2: Book ←←→ Movie, and Task
6 
3: Book ←←→ Music. For the Douban dataset, we choose three subsets,
i.e., DoubanBook, DoubanMusic, and DoubanMovie, and construct the
other three CDR tasks, i.e., Task 4: DoubanBook ←←→ DoubanMovie, Task
5: DoubanBook ←←→ DoubanMusic, and Task 6: DoubanMusic ←←→ Douban-
Movie. All the 6 tasks will be used to investigate the effectiveness of
the proposed approach.

For each task, we randomly sample a fraction of overlapping users
as the test users and take the rest of overlapping users as the training
et. Table 2 shows the statistics of the all tasks. In the experiment, we

investigate three different proportions of the test users. To be specific,
let 𝛽 denote the proportion of the overlapping test users in all the
verlapping users, we set 𝛽 as 20%, 50%, and 80%, respectively. Note
hat a larger 𝛽 indicates a severer data sparsity and cold-start problem.

5.2. Baselines

To evaluate the performance of the proposed approach, we compare
t with the following six competitive baseline methods:

• TGT [34]. This baseline represents the target matrix factorization
model and it is trained by solely utilizing the target domain data.

• CMF [5]. The collective matrix factorization (CMF) is an exten-
sion of matrix factorization model. It can simultaneously fac-
tor several matrices and share the user embeddings across both
source and target domains.

• EMCDR [8]. It addresses the CDR problem by proposing an
embedding-and-mapping framework. EMCDR first projects users
and items in both source and target domains into two different la-
tent spaces. After that, a mapping function is learned between the
two latent spaces in order to model the coordinate relationship
between the two domains.

• DCDCSR [9]. DCDCSR first employs the MF model to learn user
and item latent factors, and then maps the latent factors across
different domains using a fully connected deep neural network
(DNN). To guide the training process of DNN, the rating spar-
sity degrees of individual users and items are also modeled for
mapping latent factors across domains more accurately.

• SSCDR [22]. This baseline proposes a semi-supervised mapping
based CDR framework, which can effectively learn the complex
relationships across domains even in the case only a few number
of labeled data is available. It first models the users and items
in the metric spaces and then trains a cross-domain mapping
function based on the distance-based loss defined by both unla-
beled and labeled data. For these cold-start users, they infer their
latent vectors by introducing a multi-hop neighborhood inference
method.

• PTUPCDR [2]. This baseline proposes to employ the meta net-
work to achieve personalized transfer of preference for users
based on their characteristic embeddings. With the meta network,
it generates personalized bridge function, which transforms user
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Table 3
Effectiveness comparison in terms of the metric MAE (↓) between of our proposed approach TJMN and the state-of-the-art approaches. The best results are highlighted in bold, ∗
enotes the performance improvement over the best performing baseline (i.e., MIMNet) is statistically significant (t-test, p ≤ 0.05 ), and Imp% represents the relative improvement
ver MIMNet.

𝛽 TGT CMF DCDCSR SSCDR EMCDR PTUPCDR REMIT MIMNet TJMN Imp%

Task1
20% 4.4803 1.5209 1.4918 1.3017 1.2350 1.1504 0.9393 0.7884 0.7646 3.02%
50% 4.4989 1.6893 1.8144 1.3762 1.3277 1.2804 1.0437 0.8629 0.7750* 10.19%
80% 4.5020 2.4186 2.7194 1.5046 1.5008 1.4049 1.2181 1.0660 0.8138* 23.66%

Task2
20% 4.1831 1.3632 1.3971 1.2390 1.1162 0.9970 0.8759 0.8678 0.8778 −1.15%
50% 4.2288 1.5813 1.6731 1.2137 1.1832 1.0894 0.9172 0.8994 0.8674* 3.56%
80% 4.2123 2.1577 2.3618 1.3172 1.3156 1.1999 1.0055 0.9757 0.8994* 7.82%

Task3
20% 4.4873 1.8284 1.8411 1.5414 1.3524 1.2286 1.3749 0.8221 0.7448* 9.40%
50% 4.5073 2.1282 2.1736 1.4739 1.4732 1.3764 1.4401 0.9271 0.7578* 18.26%
80% 4.6204 3.0130 3.1405 1.6414 1.7191 1.5784 1.6396 1.0782 0.7835* 27.33%

Task4
20% 3.9377 1.1367 – – 1.1492 0.8283 – 0.7138 0.7135 0.04%
50% 4.0054 1.2362 – – 1.0947 0.8590 – 0.7300 0.7340 −0.55%
80% 3.9899 1.6421 – – 1.2004 0.9478 – 0.7925 0.7739* 2.35%

Task5
20% 4.4383 2.9467 – – 3.1571 2.8758 – 1.9353 1.1519* 40.48%
50% 4.4037 3.2380 – – 3.5488 3.3463 – 2.3345 1.2314* 47.25%
80% 4.3654 3.7770 – – 3.7713 3.8538 – 2.6962 1.3905* 48.43%

Task6
20% 4.0183 1.3738 – – 1.4476 0.8357 – 0.6945 0.7123 −2.57%
50% 4.0026 1.4496 – – 1.4557 0.9112 – 0.7282 0.7215* 0.92%
80% 4.0056 2.0336 – – 1.5702 1.0100 – 0.7735 0.7670 0.84%
i
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preference embeddings in the source domain into the target do-
main. For the cold-start users in the target domain, PTUPCDR
utilizes the transformed embeddings as their initial embeddings.

• REMIT [23]. REMIT considers users’ multiple interests in the
source domain. Specifically, it employs heterogeneous informa-
tion network and meta-path to get users’ multiple interests in
the source domain and develops a reinforced method to dy-
namically assign weights to transformed multiple interests for
different training instances to optimize the performance of the
target model.

• MIMNet [24]. This is the state-of-the-art baseline, which also
take into account the multiple interests of users. Specifically, it
employs capsule network to learn user multiple interests and then
transfers user representations from source domain to target do-
main based on the multiple interest-level preference bridge gener-
ated by the learned interests. As for the transferred user represen-
tations, MIMNet incorporates a multi-granularity target-guided
attention network to aggregate them for recommendation.

5.3. Evaluation metrics

Following [2,8,35], we use Mean Absolute Error (MAE) and Root
Mean Square Error (RMSE) as the evaluation metrics. It is worth
noting that a lower value of MAE and RMSE indicates a better model
performance. Let 𝑛 denote the number of samples, 𝑦̂𝑖 and 𝑦𝑖 denote the
predicted and observed rating scores of the 𝑖th sample, respectively.
For each metric, we repeat all experiments five times and report the
average results to keep reliability. The definition of the two metrics
are given as follows:

• MAE (Mean Absolute Error): It measures the average of the
absolute error between the predicted and observed rating scores.

𝑀 𝐴𝐸 = 1
𝑛

𝑛
∑

𝑖=1
|𝑦̂𝑖 − 𝑦𝑖|. (27)

• RMSE (Root Mean Square Error): It measures the sample standard
deviation of the difference between the predicted and observed
rating scores.

𝑅𝑀 𝑆 𝐸 =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(𝑦̂𝑖 − 𝑦𝑖)2. (28)
p

7 
5.4. Overall performance

In this section, we investigate the performance of our proposed ap-
proach TJMN under different cold-start levels. The overall performance
of our proposed approach TJMN and the baselines on six tasks are
llustrated in Tables 3 and 4 in terms of both metrics. The best results

in terms of the corresponding metric are highlighted in bold, and ∗ de-
notes the performance improvement over the best performing baseline
(i.e., MIMNet) is statistically significant (paired t-test, p ≤ 0.05). The
results show that our approach achieves the best performance on most
tasks. In addition, we have the following insights and analysis.

With a higher cold-start level (i.e., a larger value of 𝛽), the perfor-
mance of all methods will decrease generally. This is because the task
will become more challenging when less useful information is available.
It is also interesting to observe that the relative performance improve-
ments of our model over the best performing baseline (i.e., MIMNet)
ecome larger with the increment of the 𝛽 value in most cases. For
xample, on the task 1, the relative performance improvement in terms

of the metric MAE of TJMN over MIMNet is 3.02% when 𝛽 = 20%,
while the relative performance improvement reaches to 23.66% when
𝛽 = 80%. The results demonstrate that our model is more robust when
training data becomes more sparse.

In addition, we can observe that TGT shows the worst performance.
The reason is that TGT solely relies on the target domain and over-
ooks the rich information in the source domain. Compared to TGT,
MF obtains a better performance since it simultaneously models the

nformation from both source and target domains by combining data
from different domains into a single domain. This also indicates that
exploiting the data from source domain is effective to alleviate the data
sparsity problem and improve the recommendation performance in the
arget domain. However, the main limitation of CMF is that it ignores
he difference of user preference in distinct domains and inevitably
eads to inferior performance. The methods (i.e., EMCDR, DCDCSR,
SCDR, PTUPCDR), which attempt to learn a cross-domain mapping
unction, demonstrates a superior performance to CMF. The reason is
ttributed to that they can effectively alleviate the domain drift issue
y modeling the complex relationships across domains. Among all base-
ines, MIMNet presents the best performance. This is because it bridges
he source and target domains in a multi-interest and multi-granularity
ay, i.e., it employs the capsule network and multiple interest-level

reference bridges to learn and transfer users’ multiple interests, and
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Table 4
Effectiveness comparison in terms of the metric RMSE (↓) between of our proposed approach TJMN and the state-of-the-art approaches. The best results are highlighted in bold,

denotes the performance improvement over the best performing baseline (i.e., MIMNet) is statistically significant (t-test, p ≤ 0.05 ). lower is better, and Imp% represents the
elative improvement over MIMNet.

𝛽 TGT CMF DCDCSR SSCDR EMCDR PTUPCDR REMIT MIMNet TJMN Imp%

Task1
20% 5.1580 2.0158 1.9210 1.6579 1.5515 1.5195 1.2709 1.1020 1.0426* 5.39%
50% 5.1736 2.2271 2.3439 1.7477 1.6644 1.6380 1.4580 1.2185 1.0600* 13.01%
80% 5.1891 5.1891 3.3065 1.9229 1.8771 1.8234 1.6601 1.4830 1.1236* 24.23%

Task2
20% 4.7536 1.7918 1.7346 1.6526 1.4120 1.3317 1.1650 1.1431 1.1342 0.78%
50% 4.7920 2.0886 2.0551 1.5602 1.4981 1.4395 1.2379 1.1869 1.1450* 3.53%
80% 4.8149 2.6777 2.7702 1.7024 1.6433 1.5916 1.3772 1.3078 1.1735* 10.27%

Task3
20% 5.1672 1.3829 2.2955 1.9283 1.6737 1.6085 1.9940 1.1487 1.0137* 11.75%
50% 5.1727 2.7275 2.6771 1.8441 1.8000 1.7447 2.0495 1.2924 1.0297* 20.33%
80% 5.2308 3.6948 3.5842 2.1403 2.1119 2.0510 2.2653 1.5029 1.0736* 28.56%

Task4
20% 4.6492 1.5761 – – 1.6556 1.1406 – 0.9356 0.9225 1.40%
50% 4.7380 1.7325 – – 1.5753 1.2376 – 0.9788 0.9739 0.50%
80% 4.7240 2.2018 – – 1.6889 1.3828 – 1.1225 1.0353* 7.77%

Task5
20% 4.6428 3.7837 – – 3.5161 3.7392 – 2.5115 1.4966* 40.41%
50% 5.1867 4.0923 – – 3.8002 4.1313 – 2.9203 1.5713* 46.19%
80% 5.2015 4.5475 – – 4.1031 4.4201 – 3.2734 1.7159* 47.58%

Task6
20% 4.7354 1.9329 – – 2.0317 1.1400 – 0.8954 0.9238 −3.17%
50% 4.7355 2.0262 – – 2.0353 1.3530 – 0.9766 0.9409* 3.66%
80% 4.7500 2.6492 – – 2.1326 1.4437 – 1.0640 1.0213* 4.01%
Table 5
Ablation study of our proposed TJMN in terms of the metric MAE (↓). The best results are highlighted in bold.

w/o Con-Loss w/o Target Bridge w/o Common Bridge w/o TKPB Full

Task1
20% 0.7732 1.0779 0.9745 0.7981 0.7646
50% 0.7809 1.1049 0.9757 0.8083 0.7750
80% 0.8283 1.2421 1.0214 0.8378 0.8138

Task2
20% 0.8846 0.9800 1.1569 0.8845 0.8778
50% 0.8842 0.9786 1.1916 0.8828 0.8674
80% 0.9098 1.0422 1.2120 0.9078 0.8994

Task3
20% 0.7585 0.9441 1.1721 0.7610 0.7448
50% 0.7791 1.0224 1.1806 0.7699 0.7578
80% 0.8049 1.1057 1.2473 0.7871 0.7835
m

v
r
S
a
o
t
c
c

m

then utilize a novel multi-granularity target-guided attention module
to aggregate transformed interest-level representations.

Our method TJMN significantly outperforms all baselines on all
tasks generally in most cases. Specifically, when only 20% of the over-
lapping users are utilized for model training (i.e., 𝛽 = 80%), the relative
performance improvements of TJMN over the best performing baseline
MIMNet in terms of MAE and RMSE on the task 1 reach to 23.66% and
24.23%, respectively. Moreover, we observe that these state-of-the-art
baselines such as PTUPCDR and MIMNet do not perform well on the
task 5 compared to the other two tasks (task 4 and task 6) derived
from the Douban dataset.For example, the MAE scores of PTUPCDR
and MIMNet are 2.8758 and 1.9353 respectively when 𝛽 = 20% on the
task 5, while its corresponding MAE scores on the task 4 (task 6) are
only 0.8283(0.8357) and 0.7138(0.6954) for PTUPCDR and MIMNet. In
contrast, our proposed method presents a superior performance on task
5. Specifically, the relative performance improvements of TJMN over
MIMNet on task 5 are 40.48%, 47.25%, 48.43% respectively when 𝛽
equals to 20%, 50%, 80% in terms of MAE. This major reason is that our
pproach can effectively capture user preference by learning multiple
ransfer bridges with different granularities, as well as leverage the

target information to guide the learning process.

5.5. Ablation study

To investigate the role of each component in our proposed TJMN,
e perform an ablation study by removing each one from the entire
odel for comparison. The details of each variant are discussed as

ollows:

• w/o Con-Loss: The two target-aware contrastive losses, i.e., 𝑝𝑒𝑟
and 𝑐 𝑜𝑚, will be removed from TJMN. In this case, only the
prediction loss  is utilized for guiding the training process.
𝑝𝑟𝑒𝑑
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• w/o Target Bridge: The target bridge will be removed from
TJMN, which means that we do not involve user preference
signals from the target domain to guide the process of preference
transfer across different domains.

• w/o Common Bridge: We remove the common bridge from
TJMN, which does not model the common user transferable char-
acteristics between the source and target domains.

• w/o TKPB: We discard the whole tri-kernel personalized bridge
module. In this case, the preference signals of different users will
be overlooked in the preference transfer learning process.

• Full: It is the full model, i.e., TJMN, proposed in this paper.

The results on three Amazon review tasks are shown in Table 5
and Table 6. From the results we can observe that our proposed

odel TJMN (i.e., Full) achieves the best performance compared with
any of its variants. To be specific, we have following observations:
First, removing the two target-aware contrastive losses (i.e., w/o Con-
Loss), the performance will degrade. For example, the performance
will drop from 0.7646 (1.0426) to 0.7732 (1.0472) on task 1 when
𝛽 = 20% in terms of the metric MAE (RMSE). Note that a higher
alue of MAE or RMSE corresponds a worse model performance. The
esults verify the validity of introducing the two contrastive losses.
econd, discarding the target bridge (i.e., w/o Target Bridge) shows
 considerable decline of performance, which proves the effectiveness
f introducing the user preference information from the target domain
o guide the preference transfer learning process. Third, utilizing the
ommon bridge will enhance the performance of our approach as it
aptures the coarse-grained user transferable characteristics. At last,

incorporating the tri-kernel personalized bridge can further boost the
odel performance because of the ability to model the fine-grained user

transferable characteristics.
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Table 6
Ablation study of our proposed TJMN in terms of the metric RMSE (↓). The best results are highlighted in bold.

w/o Con-Loss w/o Target Bridge w/o Common Bridge w/o TKPB Full

Task1
20% 1.0472 1.3940 1.2726 1.0673 1.0426
50% 1.0876 1.4407 1.2809 1.0831 1.0600
80% 1.1388 1.6492 1.3495 1.1543 1.1236

Task2
20% 1.1376 1.2590 1.4717 1.1392 1.1342
50% 1.1548 1.2612 1.5075 1.1493 1.1450
80% 1.1956 1.3558 1.5374 1.1771 1.1735

Task3
20% 1.0297 1.2336 1.5016 1.0202 1.0137
50% 1.0475 1.3418 1.5215 1.0347 1.0297
80% 1.1025 1.4862 1.6108 1.0769 1.0736
Fig. 3. Performance of the three state-of-the-art baselines EMCDR, PTUPCDR, MIMNet and our proposed model TJMN upon three different base models, including MF, GMF and
YouTube DNN, with different 𝛽 values (i.e., 20%, 50% and 80%) from top to bottom.
5.6. Generalization study

Existing CDR methods, including the proposed method TJMN, apply
MF as the base model to conduct experimental evaluation. In this
section, we investigate the performance of TJMN under different base
models. Following [2], we testify the compatibility of TJMN by further
utilizing other two base models, i.e., GMF [36] and YouTube DNN [37].

Fig. 3 demonstrates the performance of our proposed model TJMN
together with the three state-of-the-art baselines EMCDR, PTUPCDR
and MIMNet upon three different base models, including MF, GMF
and YouTube DNN, with different 𝛽 values (i.e., 20%, 50% and 80%).
From the results, we have the following insightful observations: First,
TJMN is consistently superior to both EMCDR and PTUPCDR on all
tasks, and superior to MIMNet in most cases when different base
models are utilized. This indicates that our proposed model has a good
9 
compatibility under different setting of base models. Second, TJMN
upon the neural base models (i.e., GMF and YouTube DNN) shows
considerably better performance as compared with the non-neural base
model (i.e., MF). This is rationale as the neural base models are more
powerful in large-scale real-world recommendations [2]. Third, the
impact of data sparsity towards TJMN upon different base models is
less sensitive as compared to both EMCDR and PTUPCDR. For example,
when the data becomes more sparse (e.g., a higher value of 𝛽), the
performance degradation of both EMCDR and PTUPCDR is significantly
larger than that of TJMN.

5.7. Parameter sensitivity

Here, we investigate the impact of important hyperparameter set-
tings on the performance of TJMN, including the trade-off parameter
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Fig. 4. Impact of 𝜆 on three Amazon review tasks in terms of MAE.
Fig. 5. Impact of 𝜏 on three Amazon review tasks in terms of MAE.
𝜆 and temperature parameter 𝜏. The results on three Amazon review
asks in terms of MAE are shown in Fig. 4 and Fig. 5, respectively.

• Impact of the parameter 𝜆. The trade-off parameter 𝜆 in Eq. (26)
controls the importance of the target-aware contrastive loss. We
vary 𝜆 in {0, 0.01, 0.1, 1, 10, 100} and the results are shown
in Fig. 4. On Task 1, we can see that the MAE performance of
TJMN first increases gradually when we raise the value of 𝜆,
and reaches a peak when 𝜆 = 1. If we continue to increase 𝜆,
the model performance will drop considerably. Similar trends can
also be observed on other two tasks. The results demonstrate that
10 
incorporating the two target-aware contrastive loss is critical for
learning better transformed representations, while focusing too
much on this loss will also deteriorate the performance of our
proposed model.

• Impact of temperature parameter 𝜏. The temperature parame-
ter 𝜏 controls the concentration level of representations. We vary
𝜏 in {0.001, 0.01, 0.1, 1, 10, 100} by fixing 𝜆 = 1, and the results
are reported in Fig. 5. On all three tasks, we can observe that the
performance of our model first raises slightly when we gradually
increase the value of 𝜏 and reaches a peak when a relatively small
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Fig. 6. Inference time (milliseconds) for a batch of samples with a batch size of 128
for different methods on Task 1.

value of 𝜏 is used, e.g., 𝜏 = 0.01. If we continue to increase the
value of 𝜏, there will be a considerable degradation of model
performance. The reason is that a small 𝜏 value corresponds to
a higher gradient for model training with respect to these hard
negative interaction items, and the penalty will concentrate more
on the high similarity region.

5.8. Efficiency analysis

In this section, we investigate the efficiency of our proposed method
JTMN. Fig. 6 shows the inference time of different methods. We can
observe that the three comparing methods, i.e., TGT, CMF and EMCDR,
are most efficient as they mainly rely on the matrix factorization tech-
niques. PTUPCDR demonstrates a higher inference time compared to
them. This is because PTUPCDR needs to generate a personalized bridge
for each user. The inference time of MIMNet is the highest among all
comparing methods as it attempts to apply multiple interest bridges for
each user. In addition, it also needs to extract the target prototype-level
signal for each target item to guide the adaptive aggregation process
of user preference in the target domain. From Fig. 6, we can see that
the inference time of JTMN is clearly lower than the best performing
baseline MIMNet, and slightly higher than the remaining methods.
The result shows that our proposed method is efficient, making it
practicable in potential applications.

6. Conclusion

In this paper, we propose the target-enhanced joint meta network
with contrastive learning for solving the cold-start problem in cross-
domain recommendation. To effectively guide the user preference
transfer across different domains, we inject the signals from the target
domain to the transferring process and propose a novel target bridge.
Moreover, we simultaneously utilize multi-grained transfer bridges
to capture the complex relationships of user preference between the
source and target domains. In addition, we model the rich partial order
relation information via exploiting these negative interacted items
and propose a tri-kernel personalized bridge. Finally, we also propose
a target-aware contrastive learning layer to learn more informative
representations towards the target domain. Experiments on six CDR
tasks verified the effectiveness of our proposed approach. The ablation
results and generalization study further testify the contribution of each
component and the strong model compatibility with different base
models.

In future work, we will consider exploring user profiling to better
catch their characteristics for preference transfer. In addition, another
future work is to incorporate auxiliary information of items, such
as attributes or multi-modality contents, to guide the representation
learning of items.
11 
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